Multivariate Longitudinal Analysis with Bivariate Correlation Test

نویسندگان

  • Eric Houngla Adjakossa
  • Ibrahim Sadissou
  • Mahouton Norbert Hounkonnou
  • Gregory Nuel
چکیده

In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model's parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexible marginalized models for bivariate longitudinal ordinal data.

Random effects models are commonly used to analyze longitudinal categorical data. Marginalized random effects models are a class of models that permit direct estimation of marginal mean parameters and characterize serial correlation for longitudinal categorical data via random effects (Heagerty, 1999). Marginally specified logistic-normal models for longitudinal binary data. Biometrics 55, 688-...

متن کامل

Transition Models for Analyzing Longitudinal Data with Bivariate Mixed Ordinal and Nominal Responses

In many longitudinal studies, nominal and ordinal mixed bivariate responses are measured. In these studies, the aim is to investigate the effects of explanatory variables on these time-related responses. A regression analysis for these types of data must allow for the correlation among responses during the time. To analyze such ordinal-nominal responses, using a proposed weighting approach, an ...

متن کامل

Estimating correlation between multivariate longitudinal data in the presence of heterogeneity

BACKGROUND Estimating correlation coefficients among outcomes is one of the most important analytical tasks in epidemiological and clinical research. Availability of multivariate longitudinal data presents a unique opportunity to assess joint evolution of outcomes over time. Bivariate linear mixed model (BLMM) provides a versatile tool with regard to assessing correlation. However, BLMMs often ...

متن کامل

Modeling of multivariate longitudinal phenotypes in family genetic studies with Bayesian multiplicity adjustment

Genetic studies often collect data on multiple traits. Most genetic association analyses, however, consider traits separately and ignore potential correlation among traits, partially because of difficulties in statistical modeling of multivariate outcomes. When multiple traits are measured in a pedigree longitudinally, additional challenges arise because in addition to correlation between trait...

متن کامل

Multivariate correlation estimator for inferring functional relationships from replicated genome-wide data

UNLABELLED Estimating pairwise correlation from replicated genome-scale (a.k.a. OMICS) data is fundamental to cluster functionally relevant biomolecules to a cellular pathway. The popular Pearson correlation coefficient estimates bivariate correlation by averaging over replicates. It is not completely satisfactory since it introduces strong bias while reducing variance. We propose a new multiva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016